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Abstract. We consider uniform star polymers on a variety of lattices, with an additional contact
interaction between pairs of vertices which are unit distance apart and are not joined by an edge
of the star. We present some rigorous results and other evidence which indicate that these
systems have the same limiting free energy as self-interacting self-avoiding walks. We discuss
the extension of these results to other homeomorphism types and to systems with an additional
surface interaction term.

Light scattering (Sunet al 1980, Parket al 1992) and viscosity (Sun 1990) measurements
on long linear polymers in dilute solution suggest that such systems undergo a sudden
collapse transition from an expanded coil to a compact ball as the temperature is decreased.
This collapse has been the subject of a great deal of theoretical work. In particular, it has
been studied using transfer matrices (Saleur 1986), exact enumeration data (Privman 1986,
Ishinabe 1987, Bennett-Woodet al 1994) and Monte Carlo methods (Mazur and McCrackin
1968, Webmanet al 1981, Meirovitch and Lim 1990, Tesiet al 1996a).

It is interesting to enquire whether the nature and location of the collapse transition are
affected by the architecture of the polymer. It seems that for randomly branched polymers
(modelled by lattice animals or trees) the location and crossover exponentφ depend on the
details of the model (Derrida and Herrmann 1983, Flesia and Gaunt 1992) and are different
from the corresponding values for self-avoiding walks (Duplantier and Saleur 1987, Bennett-
Wood et al 1994, Senoet al 1988). On the other hand, there is good evidence (Maes and
Vanderzande 1990, Bennett-Woodet al 1995) that the location of the transition is the same
for walks and polygons. Indeed, there is evidence that the dependence of the limiting free
energy on the value of the interaction parameter is the same for walks and polygons, at least
in three dimensions (Tesiet al 1996b). In this paper, we present evidence using a variety
of techniques that the limiting free energy (per edge) of uniform stars is the same as for
walks for all values of the interaction parameter.

An f -star is a connected subgraph of the lattice with one vertex of degreef and f
vertices of degree one. A branch is the sequence of edges connecting the vertex of degreef

to a vertex of degree one. A star is uniform if each of thef branches has the same number
of edges. Let the number of uniformf -stars on ad-dimensional simple hypercubic lattice
with n edges in each branch and withk contacts besn(k; f ). Clearly, sn(k; 1) ≡ cn(k),
the number of self-avoiding walks withn edges andk contacts. Define the corresponding
partition functions as

Zn(β; f ) =
∑
k

sn(k; f )eβk (1)
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and

Zn(β) =
∑
k

cn(k)e
βk. (2)

We want to show that the limiting free energy for stars exists for allβ 6 0 and is equal
to the free energy of interacting self-avoiding walks but, before proving this theorem, we
need some definitions and lemmas.

Lemma 1.The limiting free energy

κ(β) = lim
n→∞ n

−1 logZn(β) (3)

exists for allβ 6 0.

Proof. This was proved by Tesiet al (1996b) for d = 3 and the proof can be easily
extended to generald. �

We write (x1, x2, . . . , xd) for the coordinates of a point inZd and define aθ -wedge to
be the set of points inZd such thatx1 > 0, 06 xi 6 ax1, for i > 2, wherea = tanθ > 0.
Let cn(k; θ) be the number ofn-step self-avoiding walks which start at the origin and lie
in a θ -wedge, withk contacts.

Write (xj1, x
j

2, . . . , x
j

d ) for the coordinates of thej th vertex of a self-avoiding walk,
j = 0, 1, 2, . . . , n. A loop is a self-avoiding walk with the additional restrictions that
0 = x0

1 < xi1 < xn1 , ∀0 < i < n and x0
j = xnj = 0, ∀j > 1, xij > 0, ∀i and ∀j > 1.

This means that the first and last edges of a loop are along thex1-axis. Let ln(k) be the
number of loops withn edges andk contacts, and defineZln(β) =

∑
k ln(k)e

βk. We say that
a self-avoiding walk ismultiply unfoldedif x0

1 < xi1 < xn1 , ∀0 < i < n, andx0
j 6 xij 6 xnj ,

∀j > 1 and∀i. Let the number of multiply unfolded walks withn edges andk contacts be
wn(k) with partition functionWn(β) =

∑
k wn(k)e

βk.

Lemma 2.The limit limn→∞ n−1 logZln(β) ≡ κl(β) exists for allβ <∞.

Proof. Two loops can be concatenated to form a third loop by translating so that the first
vertex of the second loop is coincident with the last vertex of the first loop. This operation
produces no new contacts. Hence∑

k1

ln1(k1)ln−n1(k − k1) 6 ln(k) (4)

so that

Zln1
(β)Zln−n1

(β) 6 Zln(β). (5)

The result follows from this supermultiplicative inequality and the upper boundZln(β) 6
max[(2d)n, (2d)neβ(d−1)n]. �
Lemma 3.The limiting free energy for loops is identical to that of self-avoiding walks for
all values ofβ 6 0.

Proof. We first note that the limiting free energy for multiply unfolded walks exists and is
equal toκ(β) for β 6 0. This can be proved by successive unfoldings in thed coordinate
directions. Each unfolding is a surjection but is at most eO(

√
n) to 1. Unfolding can delete

contacts but cannot create them. We omit the details, which are similar to those in the proof
of theorem 2.4 in Tesiet al (1996b).

To construct a lower bound onZln(β) we concatenate pairs of multiply unfolded walks
as follows. Fixβ 6 0. The set ofn-edge multiply unfolded walks can be divided into
subsets according to the coordinates of thenth vertex. For fixedn there are less than
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(n + 1)d such subsets. We label these subsets with the coordinates(x2, x3, . . . , xd) of the
nth vertex. Define themost popular setto be the first subset (in lexicographic order) which
contributes at least as much as any other subset to the partition functionWn(β). Clearly the
most popular set depends on bothn andβ. This set will have a partition function at least
as large asWn(β)/(n+ 1)d . Concatenate a multiply unfolded walk from the most popular
set with another (or possibly the same) walk from this set, reflected in the planex1 = 0 and
suitably translated. The resulting object will be a loop, with no contacts between the two
parts coming from the two multiply unfolded walks. Therefore

Zl2n(β) >
(
Wn(β)

(n+ 1)d

)2

. (6)

Taking logarithms, dividing by 2n and lettingn go to infinity gives

lim inf
n→∞ n−1 logZln(β) > lim

n→∞ n
−1 logWn(β) = κ(β). (7)

Together with the obvious upper boundZln(β) 6 Zn(β) (since every loop is a walk) this
inequality completes the proof. �
Lemma 4.For all β 6 0, and for anyθ > 0,

lim
n→∞ n

−1 log
∑
k

cn(k; θ)eβk = κ(β). (8)

Proof. The proof is based on an idea which appears in Hammersley and Whittington
(1985). Fixβ 6 0 andθ > 0. We first note that

∑
k cn(k; θ)eβk 6 Zn(β) for any value of

θ , so that

lim sup
n→∞

n−1 log
∑
k

cn(k; θ)eβk 6 κ(β). (9)

We construct a lower bound on the partition function for walks in a wedge by concatenating
loops in such a way that new contacts are not formed by the concatenation. For anyε > 0,
lemmas 2 and 3 show that there is a value ofN = N(ε, β) such that

κ(β)− ε 6 N−1 logZlN(β). (10)

Let q0 = dN cotθe. For a givenn write n = Np + q0 + q1 where 06 q1 < N .
Concatenatep loops each withN edges with the left-most vertex at(q0 + q1, 0, 0, . . . ,0).
The resulting object is a loop which fits inside theθ -wedge. By addingq0+q1 edges to join
(q0+q1, 0, 0, . . . ,0) to the origin we obtain a walk withn edges within theθ -wedge. Since
the separate loops can be chosen independently, and since the contacts can be distributed
over thep loops and there are no contacts between loops, we have∑

k

cn(k, θ)e
βk > ZlN(β)p. (11)

Taking logarithms, dividing byn and lettingn go to infinity gives

lim inf
n→∞ n−1 log

∑
k

cn(k, θ)e
βk > N−1 logZlN(β) > κ(β)− ε. (12)

Sinceε is arbitrary we can letε → 0+. This, together with (9), gives the required result.�
We are now in a position to prove the main theorem of this paper.

Theorem 1.The limiting free energy

lim
n→∞

1

nf
logZn(β; f ) ≡ κf (β) (13)

exists for allβ 6 0 andκf (β) = κ(β), independent off , whereκ(β) is the limiting free
energy for self-avoiding walks.
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Figure 1. A suitable arrangement of wedges ind = 2.

Proof. To obtain a lower bound onZn(β; f ) we construct a set off disjoint wedges
which areθ -wedges or rotations or translations ofθ -wedges with the additional condition that
vertices in disjoint wedges are not unit distance apart. Figure 1 gives a suitable arrangement
in two dimensions. By adding pairs of edges to join the apices of the wedges to the origin,
along coordinate axes, and embedding walks withn− 2 edges independently inf wedges,
we have ∑

k

sn(k; f )eβk >
∑
k

f∏
i=1

∑
ki

cn−2(ki; θ)eβki (14)

with
∑f

i=1 ki = k.
We next construct an upper bound onZn(β; f ). If we embedf n-step self-avoiding

walks independently, but with a common origin, then

sn(k; f ) 6
∑
{ki }

f∏
i=1

cn(ki) (15)

where the sum is over all sets ofki such thatki > 0 ∀i and
∑f

i=1 ki 6 k. Note that
k−∑f

i=1 ki ≡ k0 is the number of contactsbetweenbranches of the star. Multiplying both
sides of equation (15) by eβk and summing overk gives

Zn(β; f ) 6 [(d − 1)nf + d] × [Zn(β)]
f . (16)

Equation (13) then follows from (14) and (16), using lemma 4. �

Tesi et al (1996b) proved that the limiting free energies for walks and polygons are
identical for β 6 0 in d = 3 and similar arguments should work for generald. The
corresponding result forβ > 0 has not been established rigorously for walks and polygons
and we have been unable to construct a proof forβ > 0 for walks and stars. We now
address this problem numerically.

For small values ofn, we have derived exact enumeration data forsn(k; f ) for all values
of f on the simple cubic, square and triangular lattices. We have formed the corresponding
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Figure 2. Estimates of the limiting free energy as a function ofβ for the square lattice. The
symbol• denotes self-avoiding walks,◦ denotes 3-stars,M denotes 4-stars and♦ denotes
polygons. Where uncertainties are not shown, they are comparable with the size of the symbols.
The straight line shown is parallel to the conjectured asymptote for largeβ (see for instance
Madraset al 1990),κ = β + c2, wherec2 is a positive constant.
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Figure 3. Estimates of the limiting free energy as a function ofβ for the triangular lattice.
The symbol• denotes self-avoiding walks,◦ denotes 3-stars and♦ denotes polygons. Where
uncertainties are not shown, they are comparable with the size of the symbols. The straight line
shown is parallel to the conjectured asymptote for largeβ (see for instance Madraset al 1990),
κ = 2β + c4, wherec4 is a positive constant.
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Figure 4. Estimates of the limiting free energy as a function ofβ for the simple cubic lattice.
The symbol• denotes self-avoiding walks,◦ denotes 3-stars and♦ denotes polygons. Where
uncertainties are not shown, they are comparable with the size of the symbols. The straight
line shown is parallel to the conjectured asymptote for largeβ (see for instance Madraset al
1990),κ = 2β + c3, wherec3 is a positive constant. The full curve is obtained by truncating
the 1/d-expansion.

partition functions (1), and used ratio methods to estimate the limiting free energyκf (β)

as a function off andβ, on the assumption that the limit in (13) exists also forβ > 0.
In figure 2, we show our estimates ofκf (β) for f = 3 and 4 on the square lattice. For
comparison, we show our corresponding numerical estimates for self-avoiding walks and
polygons. Figures 3 and 4 give corresponding results for the triangular and simple cubic
lattices, respectively. Forβ 6 0, these estimates are consistent with our theorem 1 and
with corollary 2.7 of Tesiet al (1996b). Forβ > 0, no such theorems have been proved
but the numerical results strongly suggest that the limiting free energies off -stars, walks
and polygons are identical atall values ofβ. In particular, this implies that the location of
the collapse transition, and the value of the crossover exponentφ, are the same for all of
these polymer architectures.

We have obtained further support for the equality of the free energiesκf (β) andκ(β) by
investigating their 1/d-expansions (Fisher and Gaunt 1964). The 1/d-expansion for the free
energy,κ(β), of walks has been obtained by Nemirovskyet al (1992). We have derived
the corresponding expansion for the free energy off -stars,κf (β), for generalf to order
1/d, and forf = 3 to order 1/d2. The terms in the expansion are independent off and
agree term-by-term with the results for walks.

The fact that walks, polygons andf -stars all appear to have the same limiting free energy
for all values ofβ raises the interesting question of whether this is also true for uniform
embeddings of graphs of every fixed homeomorphism type. For the special caseβ = 0,
uniform combs and uniform brushes were investigated by Gauntet al (1986) and Soteros and
Whittington (1989), and more general architectures by Soteros (1992). For the caseβ 6 0,
we have extended theorem 1 to apply to uniform combs and uniform brushes, the proof
will appear elsewhere. It would be interesting to investigate the caseβ > 0 numerically.
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Another interesting extension is to the case where the self-interacting polymer also
interacts with a surface. For the caseβ = 0, Soteros (1992) has shown that the dependence
of the free energy on the strengthα of the interaction with the surface is independent
of homeomorphism type ford > 3 but depends on homeomorphism type whend = 2.
Recently, Vrbov́a and Whittington (1996) have shown that walks and polygons ind = 3
have the same limiting free energy for all values ofα when β 6 0. We have proved
the corresponding result for uniform stars, combs and brushes, details will be published
elsewhere.
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